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Abstract— This article research into the significance of caching
within Function-as-a-Service (FaaS) environments, exploring how
caching strategies can substantially enhance performance and
scalability in the realm of serverless computing. A versatile
caching architecture for FaaS is introduced, tailored to ac-
commodate different caching strategies. The architecture is
implemented by extending an open-source FaaS framework,
specifically Google’s Functions Framework. An aspect-oriented
approach is adopted to transparently specify the relevant objects
that should be cached, effectively decoupling function implemen-
tation from deployment configuration. The study extensively in-
vestigates various caching mechanisms, encompassing in-process,
out-of-process, and network caching, and systematically assesses
their impact on response times and resource utilization. The
findings underscore the trade-offs inherent in employing caching
techniques, ultimately aiming to optimize FaaS performance and
improve overall system efficiency.

Keywords: Cloud; Serverless; Function-as-a-Service;
Cache architectures.

I. INTRODUCTION

Cloud computing solutions have gained increasing popu-
larity over the years. Among these solutions, Function-as-a-
Service (FaaS) provided by cloud platforms has emerged as
a powerful paradigm enabling the implementation of scalable
services triggered by external events. Functions are designed
to be serverless and short-lived, allowing the infrastructure to
deploy serverless applications reacting to events such as an
HTTP request, uploading an image to a data lake, or sending
a message to a message broker [1], [2], [3]. They are usually
used in scenarios where streams of events from different
sources are handled by one or more functions, writing the
result to an external data repository. There are several advan-
tages to deploying applications in FaaS platforms, including
built-in scalability, improved development speed, and cost
efficiency [4]. However these services present new research
challenges. One of them is related to the data-intensive nature
of modern systems which makes the FaaS approach heavily
dependent on remote data storage access [5]. During the
function’s execution, latency increases with the values scaling
depending on the size of data that is needed to process
the function. These types of problems can be mitigated by
applying caching systems [6] which bring data closer to the
function’s environment.

Different cache architectures have been researched and eval-
uated to mitigate some of the problems accessing data in FaaS
[5], [7], [8]. However, to our knowledge, there is no model or

implementation available to integrate and make an assessment
of different cache architectures. In this work, we propose
a model to integrate different cache architectures in open-
source FaaS frameworks. Based on this model, we developed
a configurable middleware to automatically intercept calls to
FaaS functions to fetch data from the cache system. We also
propose a way for system architects to choose different cache
solutions during the setup phase of the middleware.

For development, we utilized the Functions Framework, an
open-source framework from Google Cloud Platform (GCP).
This framework is specifically designed to be compatible with
GCP’s Function as a Service (FaaS) platform, allowing us to
demonstrate how this approach can seamlessly integrate into a
production environment. The Functions Framework provides
the capability to deploy a server where functions can be
registered and triggered to execute custom code written by
programmers. We considered three options for organizing the
cache system: (i) implementing a cache within the process
running the function, (ii) utilizing a cache running outside
the function’s process but on the same machine, and (iii)
employing a cache running on a separate machine connected
to the one running the function.

The system configuration remains transparent to developers
as they only need to modify the configuration file and have
their function return the value that should be cached during
the request processing. The function does not require any
knowledge about the caching mechanism as the infrastructure
handles the retrieval and storage of key-value pairs for each
request’s content. By adhering to these requirements, the
infrastructure caches the values, ensuring transparency and
enhancing the usability of the developed project.

To evaluate our solution, we deployed a function that
generates a thumbnail from an image [9]. The function is
executed only if the thumbnail is not already in the cache.
We conducted a series of experiments using various images
to measure the advantages of each caching architecture and
demonstrate the feasibility of implementing our proposed
model. These experiments measure: (1) the time taken for the
function to execute, without cache and with the three caching
deployments; (2) the scalability of the system with a local and
remote cache.

The paper is structured as follows: Section II provides an
overview of related work, comparing it with our approach.
Section III presents the architecture of our caching system
and explains how it integrates with the Functions Framework.
In Section IV, we provide implementation details, and Section
V discusses the results obtained. Finally, Section VI presents
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the conclusion, along with directions for future research.

II. RELATED WORK

Serverless computing, particularly within Function-as-a-
Service (FaaS) infrastructures, diverges from the conventional
cloud deployment model centered around virtual machines
[4], [10], [11]. This paradigm shift makes use of auto-scaling
mechanisms and an architectural style based on pay-as-you-
go principles. However, inherent limitations exist in this ap-
proach, with notable issues including I/O bottlenecks and the
unavoidable inter-function communication occurring through
slower storage channels [12], [13]. The recurrent utilization of
external data sources, a common style in modern applications,
introduces performance challenges by impeding client requests
due to the stateless nature of functions.

Caching techniques can can be applied in order to improve
the performance of the function execution, in a similar way as
it is done in many other areas of computer systems that aren’t
directly related to FaaS, e.g. network caching services [14],
IoT cloud-based solutions [15] and Content Delivery Networks
[16].

The current serverless platforms use stateless containers that
are ephemeral, separating functions and preventing them from
sharing memory directly. This forces the user to replicate and
serialize data multiple times, thereby incurring in additional
performance costs. To overcome this, Shillaker and Pietzuch
[17] propose Function as a Service with Memory (FaasM) , a
new lightweight isolation strategy allowing functions to share
memory directly and reduce resource overheads. By utilizing
an abstraction similar to a distributed shared memory, FaasM
makes it easier to transfer data among function instances
within a worker node and across worker nodes, with the
assistance of shared memory.

Mvondo et al. [8] proposed a cache system, called OFC, that
uses the over-provisioned memory to reduce latency without
changes at the code level. Their approach capitalizes on two
prevalent characteristics in Function-as-a-Service (FaaS): the
common practice of memory overprovisioning, stemming from
the challenge of accurately estimating the function’s effective
footprint due to its input-dependent nature, and the retention of
the function sandbox post-invocation to minimize cold starts.
OFC is an in-memory caching system for FaaS platforms
supported on RAMCloud [18] to have a distributed memory
system over the worker nodes of the cluster. The prototype
was developed with the Apache OpenWhisk stack [19]. Lever-
aging machine learning models trained on diverse input data
categories, such as multimedia formats, OFC estimates the
actual memory resources required for each function invocation.
The surplus capacity is then allocated to the cache, optimizing
overall performance.

Klimovic et al. proposed a distributed storage system named
Pocket ([20]) designed for application within the domains of
data analytics [21]. It operates as a distributed data store tai-
lored to facilitate efficient data sharing in serverless analytics,
with characteristics such as elevated throughput, minimized
latency, and automatic scalability of computational resources.
It has a storage mechanism that ensures access with sub-
millisecond latency, and library with a simple API to access

this storage. The system is designed to be administered by
cloud service providers and adheres to a pay-as-you-utilize
financial model.

Romero et al. proposed Faa$T [5], a serverless in-memory
caching layer for Function-as-a-Service (FaaS) applications,
that manages data accessed by the application. It eliminates
the need for remote in-memory caching, reducing costs for
users and FaaS providers, and enables different cache replace-
ment and persistence policies per application. Faa$T also can
remove cache space required by rarely-invoked applications
from memory when not needed, reduces overall traffic to
remote storage, and can pre-fetch popular data when reloading
each application.

The Cloudburst [7] platform is an autoscaling Function-as-a-
Service system with abstractions that enable stateful programs.
It preserves the serverless computing advantages of autoscal-
ing while offering familiar Python programming with low-
latency changeable state and communication. Cloudburst uses
a combination of an autoscaling key-value store and mutable
caches co-located with function executors to achieve what they
call logical disaggregation and physical colocation. It is built
on top of Anna [22], an autoscaling key-value store for state
sharing and overlay routing, and presents novel protocols that
ensure consistency guarantees across function invocations that
run on separate nodes.

In a related work to this topic, Wang et al. takes advantage of
serverless functions itself to implement a cache system called
InfiniCache [23], aiming to achieves both cost effectiveness
(available in system like S3) and high-performance (available
in system like Redis). They do so using techniques to provide
fault tolerance to data loss, because lifetime of functions is
limited, and aggregate network bandwidth of multiple cloud
functions in parallel. However, applications need to be changed
to use this specific cache system.

In our work we developed a generic model to integrate dif-
ferent caching systems for immutable data in order to reduce
latency during FaaS function execution. When compared with
related work, our approach is transparent to the application,
without the need to change the calling function. We introduce a
middleware layer between the function and the specific cache,
making it possible to change the type of caching system on
the setup phase.

III. PROPOSED ARCHITECTURE

This subsection describes the generic FaaS architecture with
and without caching services. Figure 1 depicts the architecture
of a typical FaaS framework with its three main modules [24],
[25], i.e., the API Gateway, an Event Mapper and the Function
Mapper that communicate with a scheduler. The API Gateway
is the endpoint to the user call that attends API requests.
The Event Mapper, maps the type of event to a function.
Finally, the function mapper makes the mapping to the runtime
environment, effectively starting a function instance or reusing
one already running. A request is received by the API and
the parameters are passed to the runtime, where they are
processed by a second layer of routing, named interceptor in
Figure 1 which handles the unmarshalling of parameters and
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Fig. 1: FaaS architecture - without cache

Fig. 2: FaaS architecture - with cache

calls the function code. The function has access to other APIs
or external storage systems, either located in the same cloud
provider or not.

Figure 2 introduces some cache-related elements near the
function code, leaving the left side of the image with the basic
components described previously. The proposed extensions to
the baseline architecture have two levels of cache: local and
remote. The local cache, which we call in-process, will be
located in the same process as the function (and its runtime).
This will allow for a very fast access to cached data. On the
downside, only one function will be able to access this cached
data. In a scenario with multiple functions accessing shared
data, there is a remote cache, located either on another process
of the same host, which we call out-of-process, or available
by a network call, which we call network. This will hinder
latency in the access to cached data but more functions will
benefit from the presence of the shared object.

The interceptor block is responsible for the connection to the
caching systems. It connects to the local or remote cache based
on the type of configurations provided by the Configurations
Module. Functions receive arguments and return values. Based
in a declarative configuration, the interceptor determines the
possible cached argument and tries to retrieve it by looking
up the argument in the cache. In the function returns a new

value for the object, the cache will be updated. A cache proxy
is used to abstract the location, wither local or remote, and
provide a uniform interface based on a key/value pair.

IV. IMPLEMENTATION

With the goal of creating a prototype of the system, we
augmented the Google Cloud Functions Framework [26],
an openly available framework. This framework operates on
the principles of serverless computing and is designed to
streamline the process of developing and deploying Google
Cloud Functions. By using this framework, developers can
compose and evaluate their functions in a local environment
prior to their deployment onto the Google Cloud Platform.
Consequently, this framework enables developers to harness
the capabilities of widely-used programming languages such
as Node.js, Java, and Go, facilitating the creation of serverless
functions. Notably, the Google Cloud Functions Framework
offers a user-friendly interface, managing HTTP requests
and triggers, simplifying the construction and deployment of
scalable cloud-centric applications. This section discusses the
components that were extended in Google Functions Frame-
work, including the dependencies of the project, composing
modules, and the three caching types implemented.
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A. Extending FaaS GCP

We have extended the FaaS GCP framework for node.js
functions, incorporating a generic and dynamic caching model
that is consulted before the execution of the function with
the goal of reducing response times, by returning already
processed values. This new middleware works with different
types of cache that can be chosen by configuration. With the
goal of demonstrating the benefits of our approach, we use a
common use case based on a thumbnail generation scenario,
using an HTTP trigger, which is a based on the referenced use
cases proposed by Yussupov et al. [9].

One of the concerns in the development of this solution is
the transparency for the programmer [27]. In this case, the
image content is an argument of the function to be executed,
being in the request object. However, the property may have
any name, so a JSON file is used to declare which property
name is relevant in the context of the request. This approach
is based on techniques used in aspect-oriented programming
[28], where behavior is added to existing code, without explicit
code modification. Doing so, makes it possible to have the
configuration deployed along with the code, but keeps the
details of the source code independent from this aspect. When
the function returns an object that should be used to update
the cache, the extended framework takes care of setting the
key/value pair, following the commitment of maintaining the
framework transparent and independent of the function’s code.

The properties of the configuration file are presented in
Listing 1. The property value ”image” is used to define the
property name that is used in the request to represent the image
content. The cachingService property from the configu-
ration file is used by the cache proxy to define the type of cache
that is being used, either the in-process cache or the remote
cache, based on the Redis cache [29]. If it is the Redis remote
caching system, the redisRemoteConnectionString
property is used to define the connection string to the caching
service.

{
"property": "image",
"cachingService": "nodeLocal",
"redisRemoteConnectionString": "redis://****"

}

Listing 1: Configuration File

GCP Functions Framework together with node-cache and
Redis modules accomplished the thumbnail generation use
case where an image is uploaded, and if the image is already
in the cache, the thumbnail of that image is returned, if not,
the function’s execution is triggered and the thumbnail has to
be generated and cached. In addition to the base code of the
framework we used the following packages:

1) Crypto [30], a module used to generate the hash keys
for the cache Key-Value pairs that are stored;

2) Image-Thumbnail [31] the module that enables the gen-
eration of the fingerprint given the original image, used
on the testing and evaluation of the solution;

3) Node-Cache [32], is an in-memory caching system used
to store key-value pairs, used as the in-process cache
implementation;

4) Redis [33], [29] is an open-source in-memory data
structure that can be used as a caching service, message
broker, streaming engine, or database.

B. Cache Proxy

The decision of using an in-process, out-of-Process, or
network caching service occurs on the function wrapper mod-
ule where the implementation of the Interceptor is made.
Operation ConnectCache, used by the Interceptor module,
connects to a particular cache implementation. As seen in List-
ing 2, the caching options are nodeLocal, redisLocal or
redisRemote, where the default case uses the connection
to the redisLocal. The connection on ConnectCache
operation only occurs if the req.cachingClient property
is null, which means that a connection to the caching system
wasn’t yet defined, and a connection should be established.
This way the same connection is reused, saving limited re-
sources.

async function ConnectCache(req, cachingService) {
if (req.cachingClient == null) {
switch (cachingService) {

case "nodeLocal":
cacheProvider.start()
req.cachingClient = cacheProvider
break;

case "redisLocal":
var redisClient = redis.createClient({});
await redisClient.connect()
req.cachingClient = redisClient

case "redisRemote":
var redisClient = redis.createClient({
url: propertyAccessTest.

redisRemoteConnectionString
})
await redisClient.connect()
req.cachingClient = redisClient
break;

default:
var redisClient = redis.createClient({});
await redisClient.connect()
req.cachingClient = redisClient

}
return req.cachingClient

}
}

Listing 2: Cache connection details

C. Functions Manager

Listing 3 contains the summary of an extension to the
framework function wrapper, which handles the HTTP request.
When a request arrives with the relevant property on the event
body, a cache key is generated using an SHA256 hash function
[34] for the base64 value of the image, generating a unique key
per image. The key, the cache proxy and the request object
are then passed to the Functions Manager module. On the
Functions Manager, the cache proxy is used to access and
check if the key value is already cached. If the value is cached,
then the cache proxy accesses the caching system and returns
the value, which is then returned to the client that originated
the request. Otherwise, if the key isn’t found on the cache, the
function is executed. On our use case, the function generates
the image thumbnail and the cache is written using by the
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cache proxy instance. Finally, the thumbnail value is returned
to the client.
const wrapHttpFunction = (func_code): reqHandler =>
{
return (req: Request, res: Response) => {

// collect data from request
image = getImageFromBody(req.body[configfile.

property])
// create hash key
hash_key = crypto.createHash(’sha256’)

.update(image)

.digest(’hex’);
// connect to cache
req.cachingClient = await cache_proxy

.ConnectCache(req, configfile.cachingService)
// get value from cache
functionResult = await cache_proxy.GetValueByKey

(configfile.cachingService, hash_key)
if (functionResult == undefined) {

functionResult = await func_code(req, res);
cache_proxy.SetValue(configfile.cachingService

, hash_key, functionResult)
}
// returned cached or live value
return functionResult

}
};

Listing 3: Function Wrappers

a) In-Process Implementation: The in-process cache de-
pends on the node-cache module [32], the module allows the
creation of a caching service instance that is executed on
the same process where the function instance will also be
executed. The node-cache used as the in-process data storage is
an in-memory caching service where key-value can be stored.
The module supports the association of a string to a JSON
object and the definition of an expiration time best known
as time to live. The interceptor calls the functions manager
module, passing the cache proxy as a parameter. The manager
module then invokes the GetValueByKey method, using
the pre-calculated hash value of the image. This allows it
to access the specific cache and check whether the value is
already cached for retrieval or if the function code needs to
be calles.

b) Out-of-Process Implementation: The out-of-process
case has the caching service system running on the same
machine as the function is being executed, so that multiple
instances of the function can access the cache on that machine.
This scenario was designed to support vertical scalability,
where more resources are allocated to the same machine since
the caching service isn’t shared along different machines.Redis
[29] is the caching service used in the testing scenarios. The
data structure is composed by key-value pairs that are stored
on an in-memory dataset, which enables low latency and high
throughput data access. In this implementation, the only main
difference is on the cache proxy, where the connection occurs
to the Redis cache system and not the node-cache instance
that is running on the same process as the function.

c) Network Implementation: For the network case, the
caching service system runs on the server located in the
same cluster where are the computational nodes supporting
the execution of the function. This means the cache service
can be accessed by different nodes running the one or more
functions, and accessing the same cache, with values that could

have been processed by requests to other clients. This scenario
gives the most advantages for situations where scalability is
necessary to guarantee a good quality of service, at the cost
of some aditional latency. The next steps are the evaluation of
results for the proposed scenarios with a brief description of
the setup that is discussed in the next section.

V. EVALUATION

The development of the three previously described cache
policies and deployments introduces potential performance
advantages that need to be assessed. This comparison between
the in-Process, out-of-Process, and network will give an un-
derstanding of how the latency, depending on the proximity
of the Functions Framework instance to the caching system,
impacts on the function execution time. Furthermore, this
section discuss how the a cache deployment, either local or
remote, may influence the scalability of the server where the
function code is deployed.

A. Evaluation Setup

The in-process use case is considered the simplest one,
where the image processing function and the caching service
are running on the same process as seen in Figure 3a. This
case has the lowest latency values in cache access from the
three different cases. The out-of-Process use case has two
different processes running, the first one accommodates the
function that processes the client’s requests, and the second
one that has a Redis [33] instance running, working as the
caching system with the key/value store of the hashed image
and the thumbnail value. For this case, since the processes are
different, it is expected that the latency for the cache access
process to have a bigger value than the in-process use case.
Figure 3b depitcs the interaction between the function instance
and the cache, where each one of them is executing on their
respective process, inside the same computer node.

Regarding the network use case, there are two computation
nodes, one where our function is being executed and attends
the HTTP requests, consulting the second virtual machine
where there is a Redis server instance with the cached data as
represented on Figure 3c. There could be multiple clients ac-
cessing the virtual machine that has the Redis cache instance,
taking advantage of the caching service, where images that
are frequently accessed by different clients could have already
been processed, obtaining the result faster by accessing the
cached thumbnail value.

Tests were made using three different images sizes, in order
to better understand the impacts it creates on the functions
framework system. The image sizes are 18KB (small), 200KB
(medium) and 4MB (large). Tests were done with two types
of virtual machine deployed at the Google Cloud Platform.
The one running the Functions Framework runtime and the
thumbnail use case function is a type e2-micro , a machine
with 0.25 vCPU and a total of 1 GB memory. The other type
of virtual machine is a e2-medium, with 0.5 vCPU, and 2
GB memory. In the VM, a docker container is running the
Redis server supporting the network cache.
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(a) In-Process cache deployment (b) Out-Of-Process use case diagram (c) Network use case diagram

Fig. 3: The three evaluated deployment strategies

B. Cache impact on performance

The first test evaluates the latency introduced by the caching
system, assessing the function execution performance. The
values are retrieved between the moment where it is validated
if the image hash key is already cached and the moment after
the thumbnail is generated or the cached value is retrieved and
returned.

Table I refers to small image, with 18KB. The table is
composed of 5 columns. The first one states the image size
in bytes, and the second one is the execution time when the
image thumbnail isn’t cached. As for the third, fourth, and fifth
columns, they represent the time between evaluating the key
and returning the already cached thumbnail value respectively
for each of the cases.

The in-process cache access latency is the smallest one,
having the out-of-process scenario a cache access time 4x
bigger and the Network case 150x compared to the in-process
case. However, in all three cases, using a cache represents an
advantage when compared to the computation of the thumbnail
of the image. The results show that the closer the cache is to
function, the smaller will be the latency values. The Network
case has the biggest discrepancy on this test since the latency
isn’t zero in the communications across the network between
different GCP virtual machines.

This second round of tests resorts to a bigger image, nearly
13 times bigger (228902 bytes image) than the first. Table II
summarizes the results for this image size. Compared to the
results in Table I case, the image processing time increased
while the Time to access the caching services were nearly the
same.

As for the large image, the processing time in Table III, are
higher given the extra memory and CPU resources needed per
request. Looking at the worst latency scenario, the network
cache, there will be an improvement in more than one order
of magnitude when compared with the no cache scenario.

C. Cache impact on scalability

A local or remote cache can have an impact on the scala-
bility of the server running the Functions Framework runtime.
To measure this impact we used a client-side tool, Apache
JMeter [35], to make several requests to the function deployed
at the extended Functions Framework runtime running on a
virtual machine. This experiment goal was to observe the
saturation point of the server, that is, the point where CPU
and memory are exhausted and requests are being throttled

by the infrastructure. Figure 4 represent an in-process cache
deployment, while Figure 5 represents the network cache
deployment. In both cases the client-side tool makes a total of
750 HTTP requests, with 5 threads on the client-side to explore
the concurrent handling of requests on the server-side. Each
HTTP request transports the medium size image in the request
body.

Figure 4 shows the server can handle up to 15 requests
per second for 30 seconds, after which the resources become
congested and drops the processing rate to approximately 5
hits per second. This is a consequence of having the runtime,
function code and cache on the same process. The response
time is the fastest, as seen in Section V-B, but the server
overflows quickly.

Figure 5 shows that the server can sustain a number of hits
per second between 12 and 15 until the end of the requests.
This is possible because the cache is located outside of the
process, in a remote machine, and is the trade-off of spending
more time accessing the remote object, as discussed in Section
V-B. However, in cases of higher loads, such as this, the
remote cache allows the function to continue serving requests.

VI. CONCLUSION

Challenges associated with efficient data caching were
analyzed and the solution Efficient FaaS was presented, an
adaptation of the Functions Framework from the Google Cloud
Platform for serverless jobs execution. Efficient FaaS aims to
provide a simple way to integrate different cache systems, in
this work we integrated three types of caching systems that
have their pros and cons.

The evaluation shows that the solution has high performance
for images with lower sizes and is able to process a high
number of requests on machines with low capacity. The
network use-case shows that is possible to have an external
cache and several functions instances running in different
machines. This is important for scenarios where the cloud
provider can change the number of machines supporting the
function execution in a elastic manner, although the current
evaluation does not address this issue.

As for future work, we intent to test different types of cache
systems and caching policies. The caching policy disposal [36]
should be addressed, because the cache can’t grow indefinitely
given memory limitations inherent in every system [37],
[38], [39]. This issue can be solved by giving an expiration
parameter to the cached values, based on the frequency that a
client needs to access those keys [40].
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TABLE I: 18 KB image processing times

Size (Bytes) No Cache (ms) In-Process (ms) Out-of-Process Network (ms)
Redis same VM (ms)

18617 39.112 0.159 0.709 27.865
18617 36.359 0.157 0.904 31.121
18617 36.755 0.210 0.541 27.772
18617 40.679 0.172 0.521 27.791
18617 36.637 0.370 1.063 26.825
18617 36.837 0.156 0.708 24.244
18617 35.661 0.117 0.543 24.013
18617 36.917 0.122 0.853 30.477
18617 36.608 0.143 0.483 29.600
18617 39.776 0.217 0.473 23.943

Average 36.796 0.158 0.626 27.781
Standard Deviation 0.332 0.029 0.118 1.961

TABLE II: 200 KB image processing times

Size (Bytes) No Cache (ms) In-Process (ms) Out-of-Process Network (ms)
Redis same VM (ms)

228902 50.544 0.162 0.646 25.512
228902 45.138 0.158 0.780 25.639
228902 46.836 0.169 0.576 25.915
228902 46.820 0.148 0.644 25.075
228902 45.812 0.154 2.808 25.164
228902 46.191 0.166 0.815 25.109
228902 44.815 0.306 0.650 24.619
228902 46.296 0.115 0.629 25.371
228902 49.345 0.155 0.774 25.392
228902 46.512 0.287 0.531 24.378

Average 46.404 0.160 0.648 25.267
Standard Deviation 2.016 0.062 0.057 0.567

TABLE III: 4 MB image processing times

Size (Bytes) No Cache (ms) In-Process (ms) Out-of-Process Network (ms)
Redis same VM (ms)

4106938 352.747 0.231 1.452 24.722
4106938 354.811 0.209 1.310 25.756
4106938 328.403 0.217 2.723 25.820
4106938 349.864 0.246 1.771 25.190
4106938 433.565 0.400 1.999 24.935
4106938 362.136 0.226 7.864 25.359
4106938 349.615 0.381 19.008 24.359
4106938 319.041 0.202 1.617 25.268
4106938 316.708 0.204 1.446 25.126
4106938 372.713 0.192 1.520 24.445

Average 351.306 0.222 1.694 25.158
Standard Deviation 9.983 0.019 0.034 0.139

Fig. 4: Medium image processing with in-process cache
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Fig. 5: Medium image processing with network cache
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